Hiện các tổ chức đã có một số phương pháp mà họ có thể áp dụng cho và dữ liệu lớn. Thực tiễn này được thể hiện trong các chính sách và quy trình CNTT có thể được điều chỉnh cho cả trí tuệ nhân tạo và dữ liệu lớn. Tất cả đều hữu ích vào thời điểm các công ty kiểm toán chuyên nghiệp cung cấp các dịch vụ trí tuệ nhân tạo và dữ liệu lớn còn hạn chế.
Dưới đây là 9 lưu ý và cách mà các tổ chức/doanh nghiệp có thể sử dụng để tự kiểm tra trí tuệ nhân tạo và dữ liệu lớn của họ:
Các tổ chức có được dữ liệu của riêng họ từ hoạt động kinh doanh, nhưng họ cũng mua và sử dụng nhiều dữ liệu từ các nhà cung cấp bên ngoài cho trí tuệ nhân tạo và phân tích. Tất cả dữ liệu từ bên ngoài cần được đánh giá về độ tin cậy và chất lượng trước khi được sử dụng trong trí tuệ nhân tạo và phân tích.
Các tổ chức có thể có các thỏa thuận và quy tắc bảo mật dữ liệu của riêng mình với khách hàng, nhưng quyền riêng tư dữ liệu này sẽ không được đảm bảo khi chúng được mở rộng cho các đối tác kinh doanh bên ngoài, có thể không có cùng tiêu chuẩn về quyền riêng tư dữ liệu. Trong những trường hợp này, cần có các chính sách và thủ tục về quyền riêng tư của dữ liệu không chỉ trong CNTT mà còn trong các bộ phận pháp lý và tuân thủ của công ty để đảm bảo rằng, khách hàng có thể sử dụng, ẩn danh hoặc chia sẻ dữ liệu của họ.
Các thiết bị IoT sẽ ngày càng đóng góp dữ liệu phi cấu trúc lớn cho hệ thống CNTT. Bởi vì những thiết bị này là thiết bị di động và được phân phối, chúng có thể dễ dàng bị mất, bị xâm phạm hoặc thất lạc. Tối thiểu, cần phải có cách theo dõi các thiết bị này và việc sử dụng chúng, đồng thời khóa chúng khi chúng được báo cáo là bị mất hoặc thất lạc.
Nhiều thiết bị IoT, cũng như bộ định tuyến và trung tâm, đi kèm với cài đặt bảo mật mặc định từ nhà cung cấp của họ không phù hợp với các tiêu chuẩn bảo mật của tổ chức. Nó cần là một phần của quy trình cài đặt, trong đó nên bao gồm một bước cài đặt bảo mật mặc định được kiểm tra và sau đó là cài đặt bảo mật doanh nghiệp trước khi chúng được triển khai.
Cần có mức độ dọn dẹp dữ liệu thích hợp, có thể liên quan đến việc loại bỏ dữ liệu, chuẩn hóa dữ liệu, các công cụ ETL (trích xuất, biến đổi, tải),... phải có sẵn để sử dụng. Điều này nhằm đảm bảo rằng dữ liệu đi vào hệ thống phân tích trí tuệ nhân tạo của tổ chức luôn sạch sẽ và chính xác nhất có thể.
Các thuật toán và dữ liệu được sử dụng trong các hệ thống liên tục thay đổi để các giả định về trí tuệ nhân tạo là đúng ngày hôm nay có thể không còn tồn tại cho ngày mai. Trí tuệ nhân tạo cũng có thể kết hợp các thành kiến không được phát hiện ngay lập tức. Do đó, quá trình giám sát và sửa đổi các thuật toán, truy vấn và dữ liệu trí tuệ nhân tạo phải liên tục. Cần có quy trình trí tuệ nhân tạo để thường xuyên điều chỉnh dữ liệu và hoạt động của trí tuệ nhân tạo.
Tất cả các kho lưu trữ dữ liệu lớn, hệ thống phân tích và trí tuệ nhân tạo phải được giám sát 24/7 để đảm bảo rằng chỉ những người dùng được phép sử dụng dữ liệu và hệ thống mới được truy cập chúng.
Tối thiểu hàng năm, các hệ thống trí tuệ nhân tạo phải được đánh giá để xác nhận rằng chúng đang đáp ứng các yêu cầu của các tổ chức. Nếu không, chúng nên được sửa đổi hoặc loại bỏ.
Nếu các hoạt động của trí tuệ nhân tạo được đưa vào các quy trình kinh doanh, thì kế hoạch khắc phục thảm họa của các tổ chức cần phải giải quyết được vấn đề ngay cả khi hệ thống này không thể hoạt động được. Nếu một hệ thống gặp phải thời gian chết thì cần phải có một hệ thống sao lưu nhanh chóng trực tuyến, hay một tập hợp các thủ tục thủ công (các nhân viên biết cách thực hiện chúng) có thể tiếp quản cho đến khi hệ thống trí tuệ nhân tạo hoạt động trở lại. Doanh nghiệp có thể trì hoãn được các quyết định mà trí tuệ nhân tạo đưa ra cho đến khi hệ thống hoạt động trở lại. Các thủ tục về thời gian ngừng hoạt động phải được liệt kê rõ ràng cho cả CNTT và doanh nghiệp cuối.
Trần Thanh Tùng
09:00 | 12/04/2021
09:00 | 30/11/2021
11:00 | 09/04/2021
08:00 | 11/11/2020
14:00 | 07/06/2021
14:00 | 07/06/2021
13:00 | 30/09/2024
Bộ nhớ RAM là một trong những nơi chứa các thông tin quý báu như mật khẩu, khóa mã, khóa phiên và nhiều dữ liệu quan trọng khác khiến nó trở thành một trong những mục tiêu quan trọng đối với tin tặc. Tấn công phân tích RAM có thể gây tiết lộ thông tin, thay đổi dữ liệu hoặc khai thác các lỗ hổng bảo mật trong hệ thống, đây đang là một hình thức tấn công bảo mật nguy hiểm đối với dữ liệu, chúng tập trung vào việc truy cập, sửa đổi hoặc đánh cắp thông tin người dùng. Bài báo sau đây sẽ trình bày về các nguy cơ, phương pháp tấn công phân tích RAM và những biện pháp bảo vệ để ngăn chặn hoạt động tấn công này.
16:00 | 23/09/2024
Quy định Bảo vệ Dữ liệu chung (GDPR) của Liên minh châu Âu là văn bản pháp lý quan trọng, hình mẫu cho các nước, khu vực khác trong việc bảo vệ dữ liệu. Tuy nhiên, việc tuân thủ GDPR sẽ đòi hỏi các tổ chức phải đầu tư kinh phí bổ sung, tăng cường nhân lực dành cho xử lý dữ liệu. Dưới đây là hướng dẫn 12 bước triển khai GDPR cho tổ chức do Ủy ban Bảo vệ Dữ liệu công bố.
10:00 | 27/05/2024
Quản lý rủi ro chuỗi cung ứng (Supply Chain Risk Management - SCRM) là quá trình tìm kiếm và giải quyết các lỗ hổng tiềm ẩn trong chuỗi cung ứng của một doanh nghiệp. Mục đích của SCRM là nhằm giảm thiểu tác động của những rủi ro này đối với hoạt động, thương hiệu và hiệu quả tài chính của doanh nghiệp.
18:00 | 22/09/2023
Do lưu giữ những thông tin quan trọng nên cơ sở dữ liệu thường nằm trong tầm ngắm của nhiều tin tặc. Ngày nay, các cuộc tấn công liên quan đến cơ sở dữ liệu để đánh cắp hay sửa đổi thông tin càng trở nên khó lường và tinh vi hơn, vì vậy việc quản lý cơ sở dữ liệu đặt ra những yêu cầu mới với các tổ chức, doanh nghiệp. Trong hệ thống phân tán, khi dữ liệu được phân mảnh và phân phối trên các vị trí khác nhau có thể dẫn đến khả năng mất toàn vẹn của dữ liệu. Thông qua sử dụng cây Merkle và công nghệ Blockchain ta có thể xác minh tính toàn vẹn của dữ liệu. Trong bài viết này, nhóm tác giả sẽ trình bày các nghiên cứu về ứng dụng cây Merkle và công nghệ Blockchain để bảo đảm tính toàn vẹn dữ liệu cho cơ sở dữ liệu phân tán, đồng thời đảm bảo hiệu năng của hệ thống.
Trong thời đại ngày nay, cùng với sự phát triển của khoa học kỹ thuật có ngày càng nhiều những cuộc tấn công vào phần cứng và gây ra nhiều hậu quả nghiêm trọng. So với các loại tấn công khác, tấn công qua kênh kề đang được nghiên cứu do khả năng khôi phục lại khóa bí mật trong khi hệ thống vẫn hoạt động bình thường mà không hề làm thay đổi phần cứng. Bài báo này sẽ trình bày một cách sơ lược về những kết quả cuộc tấn công kênh kề lên mã hóa RSA cài đặt trên điện thoại thông minh sử dụng hệ điều hành Android tại Viện Khoa học - Công nghệ mật mã. Nhóm tác giả đã tấn công khôi phục được một phần khóa bí mật của mã hóa RSA cài đặt trên điện thoại thông minh và chứng minh khả năng rò rỉ thông tin qua kênh kề.
14:00 | 11/09/2024
Nhằm trang bị cho người dân “vũ khí” chống lừa đảo trên không gian mạng, Cục An toàn thông tin (Bộ TT&TT) triển khai chiến dịch quốc gia với 5 nhóm kỹ năng thiết yếu, từ nhận biết dấu hiệu lừa đảo đến xử lý tình huống khi bị tấn công.
10:00 | 18/10/2024