Abstract - In this paper, the authors propose a method for detecting IoT botnet malware based on PSI graphs using Convolutional Neural Network (CNN). Through analyzing the characteristics of Botnet on IoT devices, the proposed method construct the graph to show the relations between PSIs, as input for the CNN neural network model. Experimental results on the 10033 data set of ELF files including 4002 IoT botnet malware samples and 6031 benign files show Accuracy and F1-score up to 98.1%.
TÀI LIỆU THAM KHẢO [1]. Pavel Celeda, Radek Krejcí, Jan Vykopal, Martin Drasar, ‘Embedded Malware - An Analysis of the Chuck Norris Botnet’, presented at the European Conference on Computer Network Defense, Berlin, Germany, 2010. [2]. Zaddach, Jonas and Bruno, Luca and Francillon, Aurelien and and Balzarotti, Davide, ‘AVATAR: A framework to support dynamic security analysis of embedded systems’ firmwares’, presented at the Proceedings of the Network and Distributed System Security Symposium, France, 2014. [3]. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T. and Rossow, C., ‘IoTPOT: A Novel Honenypot for Revealing Current IoT Threats’, J. Inf. Process., vol. 24, pp. 522–533, May 2016. [4]. Ahmad Darki, Chun-Yu Chuang, Michalis Faloutsos, Zhiyun Qian, Heng Yin, ‘RARE: A Systematic Augmented Router Emulation for Malware Analysis’, in Lecture Notes in Computer Science, vol. 10771, pp. 60–72, 2018. [5]. A. Jacobsson, M. Boldt and B. Carlsson, ‘A risk analysis of a smart home automation system’, Future Gener. Comput. Syst., vol. 56, pp. 719–733, 2016. [6]. Chun-Jung Wu, Ying Tie, Satoshi Hara, and Kazuki Tamiya, ‘IoTProtect: Highly Deployable Whitelist-based Protection for Low-cost Internet-of-Things Devices’, J. Inf. Process., vol. 26, pp. 662–672, 2018. [7]. T. Ronghua, ‘An Integrated Malware Detection and Classification System’, MEng Chongqing Univ. BEngChangchun Univ. Sci. Technol., vol. Doctor of Philosophy, Aug. 2011. [8]. Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, Giovanni Vigna, ‘Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware’, Yan Shoshitaishvili Ruoyu Wang Christophe Hauser Christopher Kruegel Giovanni Vigna, pp. 15, 2015. [9]. D. Davidson, B. Moench, and S. Jha, ‘FIE on Firmware, Finding vulnerabilities in embedded systems using symbolic execution’, 22nd USENIX Secur. Symp. USENIX, pp. 16, 2013. [10]. Rafiqul Islam, Ronghua Tian, Lynn M. Batten, and Steve Versteeg, ‘Classification of malware based on integrated static and dynamic features’, J. Netw. Comput. Appl., vol. 36, pp. 646–656, 2013. [11]. A. Costin, J. Zaddach, and A. Francillon, ‘A large scale analysis of the security of embedded firmwares’, 23rd USENIX Secur. Symp., pp. 95–100, 2014. [12]. Angrishi, Kishore, ‘Turning Internet of Things (IoT) into Internet of Vulnerabilities (IoV): IoT Botnets’, presented at the arXiv preprint arXiv:1702.03681, 2017. [13]. Christopher D. McDermott, Farzan Majdani, Andrei V. Petrovski, ‘Botnet Detection in the Internet of Things using Deep Learning Approaches’, presented at the International joint conference on neural networks 2018, Rio de Janeiro, Brazil. [14]. Yuan, Z., Lu, Y., Wang, Z., Xue, Y, ‘Droid-Sec: deep learning in android malware detection’, presented at the ACM SIGCOMM Computer Communication Review, vol. 44, pp. 371–372, 2014. [15]. Saxe, J., Berlin, K., ‘Deep neural network based malware detection using two dimensional binary program features.’, presented at the 10th International Conference on Malicious and Unwanted Software (MALWARE), pp. 11–20, 2015. [16]. Hamed HaddadPajouh, Ali Dehghantanha, Raouf Khayami, Kim-Kwang Raymond Choo, ‘A Deep Recurrent Neural Network Based Approach for Internet of Things Malware Threat Hunting’, 2018. [17]. Kishore Angrish, ‘Turning Internet of Things(IoT) into Internet of Vulnerabilities (IoV) : IoT Botnets’, ArXiv170203681v1 CsNI, Feb. 2017. [18]. Michele De Donno, Nicola Dragoni, Alberto Giaretta, Angelo Spognardi, ‘Analysis of DDoS-Capable IoT Malwares’, in The Federated Conference on Computer Science and Information Systems, vol. 11, pp. 807–816, 2017. [19]. M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and and G. Giacinto, ‘Novel feature extraction, selection and fusion for effective malware family classification’, presented at the Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 183–194, 2016. [20]. Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui and Chen, Yang Liu and Shantanu Jaiswa, ‘graph2vec: Learning Distributed Representations of Graphs’, presented at the arXiv:1707.05005v1, 2017. [21]. Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui and Chen, Yang Liu and Shantanu Jaiswa, ‘graph2vec: Learning Distributed Representations of Graphs’, presented at the arXiv:1707.05005v1, 2017. [22]. Jiawei Su, Danilo Vasconcellos Vargas, Sanjiva Prasad, Daniele Sgandurra, Yaokai Feng, Kouichi Sakurai, ‘Lightweight Classification of IoT Malware based on Image Recognition’, CoRR, vol. abs/1802.03714, 2018. [23]. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.R. Choo, ‘A deep Recurrent Neural Network based approach for internet of things malware threat hunting’, presented at the Future Generation Computer Systems, 2018. |
Thông tin trích dẫn: Ngô Quốc Dũng, Lê Văn Hoàng, Nguyễn Huy Trung, "Phát hiện mã độc IoT botnet dựa trên đồ thị PSI với mô hình Skip-gram", Nghiên cứu khoa học và công nghệ trong lĩnh vực An toàn thông tin, Tạp chí An toàn thông tin, Vol. 07, pp. 29 - 36, No. 01, 2018.
Ngô Quốc Dũng, Lê Văn Hoàng, Nguyễn Huy Trung
14:00 | 03/06/2019
08:00 | 22/06/2020
08:00 | 08/03/2019
09:00 | 25/03/2020
09:00 | 28/02/2019
16:00 | 17/12/2020
09:00 | 26/01/2021
14:00 | 02/10/2024
Trong bối cảnh các cuộc tấn công mạng ngày càng tinh vi và phức tạp, Zero Trust đang nổi lên như một mô hình bảo mật toàn diện cho doanh nghiệp. Tại Hội thảo Netpoleon Solutions Day 2024 với chủ đề “Transforming Security with Zero Trust”, ông Nguyễn Kỳ Văn, Giám đốc Netpoleon Việt Nam đã chia sẻ những góc nhìn sâu sắc về tầm quan trọng của mô hình Zero Trust và cách thức doanh nghiệp Việt Nam có thể ứng dụng hiệu quả giải pháp này.
14:00 | 11/09/2024
Keylogger là phần cứng hoặc phần mềm có khả năng theo dõi tất cả các hoạt động thao tác nhập bàn phím, trong đó có các thông tin nhạy cảm như tên người dùng, mật khẩu thẻ tín dụng, thẻ ngân hàng, tài khoản mạng xã hội hay các thông tin cá nhân khác. Keylogger thậm chí có thể ghi lại các hành động gõ phím từ bàn phím ảo, bao gồm các phím số và ký tự đặc biệt. Bài báo sẽ hướng dẫn độc giả cách thức phát hiện và một số biện pháp kiểm tra, ngăn chặn các chương trình Keylogger nhằm bảo vệ máy tính trước mối đe dọa nguy hiểm này.
14:00 | 23/02/2024
SSH (Secure Socket Shell) là giao thức mạng để đăng nhập vào một máy tính từ xa trên một kênh truyền an toàn. Trong đó, OpenSSH là một chuẩn SSH được sử dụng ở hầu hết các bản phân phối của Linux/BSD như Ubuntu, Debian, Centos, FreeBSD, mã hóa tất cả các thông tin trên đường truyền để chống lại các mối đe dọa như nghe lén, dò mật khẩu và các hình thức tấn công mạng khác. Trong bài viết này sẽ hướng dẫn độc giả cách thức tăng cường bảo mật cho OpenSSH với một số thiết lập bảo mật và cấu hình tùy chọn cần thiết nhằm đảm bảo truy cập từ xa vào máy chủ Linux được an toàn.
10:00 | 26/10/2023
Trong thời gian gần đây, các trường hợp lừa đảo qua mã QR ngày càng nở rộ với các hình thức tinh vi. Bên cạnh hình thức lừa đảo cũ là dán đè mã QR thanh toán tại các cửa hàng khiến tiền chuyển về tài khoản kẻ gian, vừa qua còn xuất hiện các hình thức lừa đảo mới.
Trong thời đại ngày nay, cùng với sự phát triển của khoa học kỹ thuật có ngày càng nhiều những cuộc tấn công vào phần cứng và gây ra nhiều hậu quả nghiêm trọng. So với các loại tấn công khác, tấn công qua kênh kề đang được nghiên cứu do khả năng khôi phục lại khóa bí mật trong khi hệ thống vẫn hoạt động bình thường mà không hề làm thay đổi phần cứng. Bài báo này sẽ trình bày một cách sơ lược về những kết quả cuộc tấn công kênh kề lên mã hóa RSA cài đặt trên điện thoại thông minh sử dụng hệ điều hành Android tại Viện Khoa học - Công nghệ mật mã. Nhóm tác giả đã tấn công khôi phục được một phần khóa bí mật của mã hóa RSA cài đặt trên điện thoại thông minh và chứng minh khả năng rò rỉ thông tin qua kênh kề.
14:00 | 11/09/2024
Trong cuộc đua 5G tại Việt Nam, Viettel đã vươn lên dẫn đầu khi trở thành nhà mạng đầu tiên chính thức tuyên bố khai trương mạng 5G. Trong khi đó, các nhà mạng khác cũng đang ráo riết chuẩn bị cho việc triển khai dịch vụ 5G, hứa hẹn một thị trường viễn thông sôi động và cạnh tranh trong thời gian tới.
09:00 | 29/10/2024